2 @article
{leeuwElectrostaticLatticeSums1979
,
3 title = {Electrostatic Lattice Sums for Semi
-Infinite Lattices
},
6 doi
= {10.1080/00268977900100951},
7 abstract = {The techniques for the rapid computation of energies of three
-dimensional neutral periodic assemblies of charged particles are extended to semi
-infinite arrays and assemblies of ions in infinite filsm. The results will be useful for simulation of ionic movements in fast
-ion conductors and dense colloidal dispersions.
},
9 journal = {Molecular Physics
},
10 author = {Leeuw
, Simon W. De and Perram
, John W.
},
14 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/KDUKWQIW
/10.1080@
00268977900100951.pdf
;/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/BSCI3PVD
/00268977900100951.html
}
17 @article
{mazarsLeknerSummationsEwald2005
,
18 archivePrefix
= {arXiv
},
20 eprint
= {cond
-mat
/0301161},
21 title = {Lekner Summations and
{{Ewald
}} Summations for Quasi
-Two Dimensional Systems
},
23 issn
= {0026-8976, 1362-3028},
24 doi
= {10.1080/00268970412331332934},
25 abstract = {Using the specific model of a bilayer of classical charged particles
(bilayer Wigner crystal
), we compare the predictions for energies and pair distribution functions obtained by Monte Carlo simulations using three different methods available to treat the long range Coulomb interactions in systems periodic in two directions but bound in the third one. The three methods compared are
: the Ewald method for quasi
-two dimensional systems
[D.E. Parry
, Surf. Sci. \$$\backslash$bm\
{49\
}\$
, 433 (1975); $\backslash$it\
{ibid.\
}, \$$\backslash$bm\
{54\
}\$
, 195 (1976)], the Hautman
-Klein method
[J. Hautman and M.L. Klein
, Mol. Phys. \$$\backslash$bm\
{75\
}\$
, 379 (1992)] and the Lekner summations method
[J. Lekner
, Physica A\$$\backslash$bm\
{176\
}\$
, 485 (1991)]. All of the three method studied in this paper may be applied to any quasi
-two dimensional systems
, including those having not the specific symmetry of slab systems. For the particular system used in this work
, the Ewald method for quasi
-two dimensional systems is exact and may be implemented with efficiency
; results obtained with the other two methods are systematically compared to results found with the Ewald method. General recommendations to implement with accuracy
, but not always with efficiency
, the Lekner summations technique in Monte Carlo algorithms are given.
},
27 journal = {Molecular Physics
},
28 author = {Mazars
, M.
},
31 keywords = {Condensed Matter
- Statistical Mechanics
},
33 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/26XXWVMR
/Mazars
- 2005 - Lekner summations and Ewald summations for quasi
-t.pdf
;/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/7TE92NAR
/0301161.html
}
36 @incollection
{weisSimpleDipolarFluids
,
37 series = {Advances in Polymer Science
},
38 title = {Simple
{{Dipolar Fluids
}} as
{{Generic Models
}} for
{{Soft Matter
}}},
39 isbn
= {978-3-540-26091-2 978-3-540-31581-0},
40 abstract = {The physical properties
, based on simulation results
, of model fluids and solids bearing an electric or magnetic point dipole moment are described. Comparison is made with experimental data on ferrofluids and electro
- or magneto
-rheological fluids. The qualitative agreement between experiment and simulation shows the interest of these simple models for the comprehension of physical systems where the dipolar interaction dominates.
},
42 booktitle = {Advanced
{{Computer Simulation Approaches
}} for
{{Soft Matter Sciences II
}}},
43 publisher = {{Springer
, Berlin
, Heidelberg
}},
44 author = {Weis
, J.
-J. and Levesque
, D.
},
46 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/ESRTJRFN
/10.1007@b136796
(1).pdf
;/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/TWV6D7D3
/b136796.html
},
47 doi
= {10.1007/b136796
}
50 @incollection
{arnoldEfficientMethodsCompute
,
51 series = {Advances in Polymer Science
},
52 title = {Efficient
{{Methods
}} to
{{Compute Long
}}-{{Range Interactions
}} for
{{Soft Matter Systems
}}},
53 isbn
= {978-3-540-26091-2 978-3-540-31581-0},
54 abstract = {An extensive introduction to the topic of how to compute long
-range interactions efficiently is presented. First
, the traditional Ewald sum for
3D Coulomb systems is reviewed
, then the P3M method of Hockney and Eastwood is discussed in some detail
, and alternative ways of dealing with the Coulomb sum are briefly mentioned. The best strategies to perform the sum under partially periodic boundary conditions are discussed
, and two recently developed methods are presented
, namely the MMM2D and ELC methods for two
-dimensionally periodic boundary conditions
, and the MMM1D method for systems with only one periodic coordinate. The dipolar Ewald sum is also reviewed. For some of the methods
, error formulas are provided which enable the algorithm to be tuned at a predefined accuracy. Open image in new window
},
56 booktitle = {Advanced
{{Computer Simulation Approaches
}} for
{{Soft Matter Sciences II
}}},
57 publisher = {{Springer
, Berlin
, Heidelberg
}},
58 author = {Arnold
, Axel and Holm
, Christian
},
60 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/6BFTZWI7
/10.1007@b136793
(1).pdf
;/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/99GCVXNR
/b136793.html
},
61 doi
= {10.1007/b136793
}
64 @article
{harrisEwaldSummationsSystems1998
,
65 title = {Ewald Summations in Systems with Two
-Dimensional Periodicity
},
68 doi
= {10.1002/(SICI
)1097-461X
(1998)68:6<385::AID
-QUA2
>3.0.CO
;2-R
},
69 abstract = {This study presents formulas for the electrostatic energy of lattices with two
-dimensional periodicity
, based on Fourier representations and alternatively on the Ewald procedure for convergence acceleration. The work extends the contributions of previous investigators by taking full advantage of plane
-group symmetry and by providing analytical formulas for all derivatives of the energy through second order. The derivatives considered include those with respect to the positions of all charges within the unit cell
, those with respect to the lattice vectors
(cell deformations
), and those involving both types of variables.~\textcopyright
{} 1998 John Wiley \
& Sons
, Inc. Int J Quant Chem
68: 385\textendash
{}404, 1998},
72 journal = {International Journal of Quantum Chemistry
},
73 author = {Harris
, Frank E.
},
76 keywords = {Ewald method
,electrostatic energy
,lattice sums
,two
-dimensional
},
78 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/JAZ7DZXT
/Harris
- 1998 - Ewald summations in systems with two
-dimensional p.pdf
;/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/KZ577FAF
/abstract.html
}
81 @article
{gaoVaporLiquidCoexistence1997
,
82 title = {Vapor\textendash
{}Liquid Coexistence of Quasi
-Two
-Dimensional
{{Stockmayer
}} Fluids
},
85 doi
= {10.1063/1.473079},
87 journal = {The Journal of Chemical Physics
},
88 author = {Gao
, G. T. and Zeng
, X. C. and Wang
, Wenchuan
},
92 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/P9P9D9CJ
/Gao ym.
- 1997 - Vapor–liquid coexistence of quasi
-two
-dimensional .pdf
;/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/M835BVF8
/1.html
}
95 @article
{hummerMolecularTheoriesSimulation1998
,
96 title = {Molecular
{{Theories
}} and
{{Simulation
}} of
{{Ions
}} and
{{Polar Molecules
}} in
{{Water
}}},
99 doi
= {10.1021/jp982195r
},
100 abstract = {Recent developments in molecular theories and simulation of ions and polar molecules in water are reviewed. The hydration of imidazole and imidazolium is used to exemplify the theoretical issues. The treatment of long
-ranged electrostatic interactions in simulations is discussed extensively. It is argued that the Ewald approach is an easy way to get correct hydration free energies corresponding to thermodynamic limit from molecular calculations. Molecular simulations with Ewald interactions and periodic boundary conditions can also be more efficient than many common alternatives. The Ewald treatment permits a conclusive extrapolation to infinite system size. Accurate results for well
-defined models have permitted careful testing of simple theories of electrostatic hydration free energies
, such as dielectric continuum models. The picture that emerges from such testing is that the most prominent failings of the simplest theories are associated with solvent proton conformations that lead to non
-Gaussian fluctuations of electrostatic potentials. Thus
, the most favorable cases for second
-order perturbation theories are monoatomic positive ions. For polar and anionic solutes
, continuum or Gaussian theories are less accurate. The appreciation of the specific deficiencies of those simple models have led to new concepts
, multistate Gaussian and quasi
-chemical theories
, which
address the cases for which the simpler theories fail. It is argued that
, relative to direct dielectric continuum treatments
, the quasi
-chemical theories provide a better theoretical
organization for the computational study of the electronic structure of solution species.
},
102 journal = {The Journal of Physical Chemistry A
},
103 author = {Hummer
, Gerhard and Pratt
, Lawrence R. and Garc\'ia
, Angel E.
},
107 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/WU5N5TMT
/Hummer ym.
- 1998 - Molecular Theories and Simulation of Ions and Pola.pdf
;/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/I65M7FSZ
/jp982195r.html
}
110 @article
{rokhlinRapidSolutionIntegral1985
,
111 title = {Rapid Solution of Integral Equations of Classical Potential Theory
},
114 doi
= {10.1016/0021-9991(85)90002-6},
115 abstract = {An algorithm is described for rapid solution of classical boundary value problems
(Dirichlet an Neumann
) for the Laplace equation based on iteratively solving integral equations of potential theory. CPU time requirements for previously published algorithms of this
type are proportional to n2
, where n is the
number of nodes in the discretization of the boundary of the region. The CPU time requirements for the algorithm of the present paper are proportional to n
, making it considerably more practical for large scale problems.
},
117 journal = {Journal of Computational Physics
},
118 author = {Rokhlin
, V
},
122 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/IG8HX6QD
/rokhlin1985.pdf
;/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/276H2VVD
/0021999185900026.html
}
125 @article
{baddourApplicationGeneralizedShift2014
,
126 title = {Application of the Generalized Shift Operator to the
{{Hankel
}} Transform
},
129 doi
= {10.1186/2193-1801-3-246},
130 abstract = {It is well known that the Hankel transform possesses neither a shift
-modulation nor a convolution
-multiplication rule
, both of which have found many uses when used with other integral transforms. In this paper
, the generalized shift operator
, as defined by Levitan
, is applied to the Hankel transform. It is shown that under this generalized definition of shift
, both convolution and shift theorems now apply to the Hankel transform. The operation of a generalized shift is compared to that of a simple shift via example.
},
131 journal = {SpringerPlus
},
132 author = {Baddour
, Natalie
},
136 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/IXG9H85Q
/Baddour
- 2014 - Application of the generalized shift operator to t.pdf
;/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/IJ3X5XXC
/2193-1801-3-246.html
}
139 @article
{wangFourierAnalysisPolar2008
,
140 title = {Fourier
{{Analysis
}} in
{{Polar
}} and
{{Spherical Coordinates
}}},
141 author = {Wang
, Qing and Ronneberger
, Olaf and Burkhardt
, Hans
},
143 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/I36FI8XD
/Wang et al.
- 2008 - Fourier Analysis in Polar and Spherical Coordinate.pdf
;/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/62QT93PD
/WRB08.html
}
146 @article
{adkinsThreedimensionalFourierTransforms2013
,
147 archivePrefix
= {arXiv
},
148 eprinttype
= {arxiv
},
149 eprint
= {1302.1830},
150 primaryClass
= {math
-ph
},
151 title = {Three
-Dimensional
{{Fourier
}} Transforms
, Integrals of Spherical
{{Bessel
}} Functions
, and Novel Delta Function Identities
},
152 abstract = {We present a general approach for evaluating a large variety of three
-dimensional Fourier transforms. The transforms considered include the useful cases of the Coulomb and dipole potentials
, and include situations where the transforms are singular and involve terms proportional to the Dirac delta function. Our approach makes use of the Rayleigh expansion of exp
(i p.r
) in terms of spherical Bessel functions
, and we study a
number of integrals
, including singular integrals
, involving a power of the independent variable times a spherical Bessel function. We work through several examples of three
-dimensional Fourier transforms using our approach and show how to derive a
number of identities involving multiple derivatives of
1/r
, 1/r\^
2, and delta
($\backslash$vec r
).
},
153 journal = {arXiv
:1302.1830 [math
-ph
]},
154 author = {Adkins
, Gregory S.
},
157 keywords = {Mathematical Physics
,42B10
},
158 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/X7KQ8EMV
/Adkins
- 2013 - Three
-dimensional Fourier transforms
, integrals of.pdf
;/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/FVQ2QGIJ
/1302.html
}
161 @article
{baddourOperationalConvolutionProperties2010
,
162 title = {Operational and Convolution Properties of Three
-Dimensional
{{Fourier
}} Transforms in Spherical Polar Coordinates
},
164 copyright
= {\textcopyright
{} 2010 Optical Society of America
},
166 doi
= {10.1364/JOSAA
.27.002144},
167 abstract = {For functions that are best described with spherical coordinates
, the three
-dimensional Fourier transform can be written in spherical coordinates as a combination of spherical Hankel transforms and spherical harmonic
series. However
, to be as useful as its Cartesian counterpart
, a spherical version of the Fourier operational toolset is required for the standard operations of shift
, multiplication
, convolution
, etc. This paper derives the spherical version of the standard Fourier operation toolset. In particular
, convolution in various forms is discussed in detail as this has important consequences for filtering. It is shown that standard multiplication and convolution rules do apply as long as the correct definition of convolution is applied.
},
171 author = {Baddour
, Natalie
},
174 keywords = {Spectrum Analysis
,Continuous optical signal processing
,Tomographic image processing
,Transforms
},
176 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/RDN4K7GW
/baddour2010.pdf
;/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/9R32Q9ND
/abstract.html
}
179 @article
{sheppardHankelTransformNdimensions2015
,
180 title = {The
{{Hankel Transform
}} in N
-Dimensions and
{{Its Applications
}} in
{{Optical Propagation
}} and
{{Imaging
}}},
183 doi
= {10.1016/bs.aiep
.2015.02.003},
184 abstract = {Wave propagation is considered in multidimensional reciprocal space. For the first Rayleigh
-Sommerfeld diffraction integral
, the propagating field can be represented by homogeneous and inhomogeneous components. These add up to give a propagating component on a hemispherical surface in reciprocal space
, and an evanescent component that lies totally outside the corresponding sphere. If evanescent waves can be neglected
, the
3D angular spectrum method
, entailing inverse Fourier transformation of the weighted hemisphere
, can be used to calculate efficiently the propagated field. This basic concept is applied in spaces of different dimensionality. For functions displaying hyperspherical symmetry in nD space
, the corresponding Hankel transformation leads to Hankel
-transform pairs. Tables of functions relevant in wave propagation
, diffraction
, and information optics are presented. The two
-dimensional
(2D
) case is particularly important as it can be applied to propagation in planar wave guides
, surface plasmonics
, and cross sections of propagationally invariant fields
, as well as to fringe analysis and image processing in two dimensions.
},
185 journal = {Advances in Imaging and Electron Physics
},
186 author = {Sheppard
, Colin J. R. and Kou
, Shan S. and Lin
, Jiao
},
189 keywords = {Green function
,diffraction
,Hankel transform
,Fourier transform
,propagation
,planar waveguides
,fringe analysis
,Plasmonics
},
191 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/MDUDQB8Q
/sheppard2015.pdf
;/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/CJEIER7D
/S107656701500021X.html
}
194 @article
{bloomfieldIndefiniteIntegralsSpherical2017
,
195 archivePrefix
= {arXiv
},
196 eprinttype
= {arxiv
},
197 eprint
= {1703.06428},
198 primaryClass
= {math
},
199 title = {Indefinite
{{Integrals
}} of
{{Spherical Bessel Functions
}}},
200 abstract = {Highly oscillatory integrals
, such as those involving Bessel functions
, are best evaluated analytically as much as possible
, as numerical errors can be difficult to control. We investigate indefinite integrals involving monomials in \$x\$ multiplying one or two spherical Bessel functions of the first kind \$j\_l
(x
)\$ with integer order \$l\$. Closed
-form solutions are presented where possible
, and recursion relations are developed that are guaranteed to reduce all integrals in this class to closed
-form solutions. These results allow for definite integrals over spherical Bessel functions to be computed quickly and accurately. For completeness
, we also present our results in terms of ordinary Bessel functions
, but in general
, the recursion relations do not terminate.
},
201 journal = {arXiv
:1703.06428 [math
]},
202 author = {Bloomfield
, Jolyon K. and Face
, Stephen H. P. and Moss
, Zander
},
205 keywords = {Mathematics
- Classical Analysis and ODEs
,Mathematics
- Numerical Analysis
},
206 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/253VUGDB
/Bloomfield et al.
- 2017 - Indefinite Integrals of Spherical Bessel Functions.pdf
;/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/UQ4RZDZ2
/1703.html
}
209 @book
{v.aIntegralnyePreobrazovaniyaOperacionnoe1962
,
210 series = {\cyrchar\CYRS\cyrchar\CYRM\cyrchar\CYRB
},
211 title = {\cyrchar\CYRI\cyrchar\cyrn\cyrchar\cyrt\cyrchar\cyre\cyrchar\cyrg\cyrchar\cyrr\cyrchar\cyra\cyrchar\cyrl\cyrchar\cyrsftsn\cyrchar\cyrn\cyrchar\cyrery\cyrchar\cyre
{} \cyrchar\CYRP\cyrchar\cyrr\cyrchar\cyre\cyrchar\cyro\cyrchar\cyrb\cyrchar\cyrr\cyrchar\cyra\cyrchar\cyrz\cyrchar\cyro\cyrchar\cyrv\cyrchar\cyra\cyrchar\cyrn\cyrchar\cyri\cyrchar\cyrya
{} \cyrchar\cyri
{} \cyrchar\CYRO\cyrchar\cyrp\cyrchar\cyre\cyrchar\cyrr\cyrchar\cyra\cyrchar\cyrc\cyrchar\cyri\cyrchar\cyro\cyrchar\cyrn\cyrchar\cyrn\cyrchar\cyro\cyrchar\cyre
{} \cyrchar\CYRI\cyrchar\cyrs\cyrchar\cyrch\cyrchar\cyri\cyrchar\cyrs\cyrchar\cyrl\cyrchar\cyre\cyrchar\cyrn\cyrchar\cyri\cyrchar\cyre
},
212 publisher = {{\cyrchar\CYRF\cyrchar\cyri\cyrchar\cyrz\cyrchar\cyrm\cyrchar\cyra\cyrchar\cyrt\cyrchar\cyrg\cyrchar\cyri\cyrchar\cyrz
}},
213 author = {\cyrchar\CYRV.\cyrchar\CYRA
, \cyrchar\CYRD\cyrchar\cyri\cyrchar\cyrt\cyrchar\cyrk\cyrchar\cyri\cyrchar\cyrn
{} and \cyrchar\CYRA.\cyrchar\CYRP
, \cyrchar\CYRP\cyrchar\cyrr\cyrchar\cyru\cyrchar\cyrd\cyrchar\cyrn\cyrchar\cyri\cyrchar\cyrk\cyrchar\cyro\cyrchar\cyrv
},
217 @incollection
{WorpitzkyNumbers2015
,
218 title = {Worpitzky
{{Numbers
}}},
219 isbn
= {978-981-4725-26-2},
220 booktitle = {Combinatorial
{{Identities
}} for
{{Stirling Numbers
}}},
221 publisher = {{WORLD SCIENTIFIC
}},
225 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/PPWCVB9C
/10.1142@
97898147252860011.pdf
;/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/PETENVWN
/9789814725286_0011.html
},
226 doi
= {10.1142/9789814725286_0011
}
229 @book
{a.pIntegralyRyadySpecialnye2003
,
230 edition
= {2. \cyrchar\cyri\cyrchar\cyrz\cyrchar\cyrd.
, \cyrchar\cyri\cyrchar\cyrs\cyrchar\cyrp\cyrchar\cyrr
},
231 title = {\cyrchar\CYRI\cyrchar\cyrn\cyrchar\cyrt\cyrchar\cyre\cyrchar\cyrg\cyrchar\cyrr\cyrchar\cyra\cyrchar\cyrl\cyrchar\cyrery
{} \cyrchar\cyri
{} \cyrchar\CYRR\cyrchar\cyrya\cyrchar\cyrd\cyrchar\cyrery.
{{\cyrchar\CYRS\cyrchar\cyrp\cyrchar\cyre\cyrchar\cyrc\cyrchar\cyri\cyrchar\cyra\cyrchar\cyrl\cyrchar\cyrsftsn\cyrchar\cyrn\cyrchar\cyrery\cyrchar\cyre
}} \cyrchar\CYRF\cyrchar\cyru\cyrchar\cyrn\cyrchar\cyrk\cyrchar\cyrc\cyrchar\cyri\cyrchar\cyri.
{{\cyrchar\CYRD\cyrchar\cyro\cyrchar\cyrp\cyrchar\cyro\cyrchar\cyrl\cyrchar\cyrn\cyrchar\cyri\cyrchar\cyrt\cyrchar\cyre\cyrchar\cyrl\cyrchar\cyrsftsn\cyrchar\cyrn\cyrchar\cyrery\cyrchar\cyre
}} \cyrchar\CYRG\cyrchar\cyrl\cyrchar\cyra\cyrchar\cyrv\cyrchar\cyrery
},
232 volume = {\cyrchar\CYRT\cyrchar\cyro\cyrchar\cyrm
{} 3},
233 isbn
= {978-5-9221-0322-0},
234 publisher = {{\cyrchar\CYRF\cyrchar\CYRI\cyrchar\CYRZ\cyrchar\CYRM\cyrchar\CYRA\cyrchar\CYRT\cyrchar\CYRL\cyrchar\CYRI\cyrchar\CYRT
}},
235 author = {\cyrchar\CYRA.\cyrchar\CYRP
, \cyrchar\CYRP\cyrchar\cyrr\cyrchar\cyru\cyrchar\cyrd\cyrchar\cyrn\cyrchar\cyri\cyrchar\cyrk\cyrchar\cyro\cyrchar\cyrv
{} and \cyrchar\CYRYU.\cyrchar\CYRA
, \cyrchar\CYRB\cyrchar\cyrr\cyrchar\cyrery\cyrchar\cyrch\cyrchar\cyrk\cyrchar\cyro\cyrchar\cyrv
{} and \cyrchar\CYRO.\cyrchar\CYRI
, \cyrchar\CYRM\cyrchar\cyra\cyrchar\cyrr\cyrchar\cyri\cyrchar\cyrch\cyrchar\cyre\cyrchar\cyrv
},
237 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/DKE6VC44
/[Prudnikov_A.P.
,_Bruechkov_YU.A.
,_Marichev_O.I.
]_I
(BookFi
)(1).djvu
}
240 @misc
{CombinatorialIdentitiesStirling
,
241 title = {Combinatorial
{{Identities
}} for
{{Stirling Numbers
}}},
242 abstract = {This book is a unique work which provides an in
-depth exploration into the mathematical expertise
, philosophy
, and knowledge of H W Gould. It is written in a style that is accessible to the reader with basic mathematical knowledge
, and yet contains material that will be of interest to the specialist in enumerative combinatorics. This book begins with exposition on the combinatorial and algebraic techniques that Professor Gould uses for proving binomial identities. These techniques are then applied to develop formulas which relate Stirling numbers of the second kind to Stirling numbers of the first kind. Professor Gould's techniques also provide connections between both types of Stirling numbers and Bernoulli numbers. Professor Gould believes his research success comes from his intuition on how to discover combinatorial identities. This book will appeal to a wide audience and may be used either as lecture notes for a beginning graduate level combinatorics class
, or as a research supplement for the specialist in enumerative combinatorics. Sample Chapter
(s
)Foreword
(94 KB
)Chapter
1: Basic Properties of Series
(183 KB
) Contents
: Basic Properties of Series The Binomial Theorem Iterative Series Two of Professor Gould's Favorite Algebraic Techniques Vandermonde Convolution The nth Difference Operator and Euler's Finite Difference Theorem Melzak's Formula Generalized Derivative Formulas Stirling Numbers of the Second Kind S
(n
; k
) Eulerian Numbers Worpitzky Numbers Stirling Numbers of the First Kind s
(n
; k
) Explicit Formulas for s
(n
; n \textemdash
{} k
) Number Theoretic Definitions of Stirling Numbers Bernoulli Numbers Appendix A
: Newton
-Gregory Expansions Appendix B
: Generalized Bernoulli and Euler Polynomials Readership
: Undergraduates
, graduates and researchers interested in combinatorial and algebraic techniques.
},
243 howpublished = {http
://www.worldscientific.com
/worldscibooks
/10.1142/9821},
244 journal = {World Scientific Publishing Company
},
245 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/K555Q8NT
/Jocelyn_Quaintance
,_Henry_W._Gould_Combinatorial_Identities_for_Stirling_Numbers_The_Unpublished_Notes_of_H_W_Gould.pdf
;/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/HHV7BB6G
/9821.html
}
248 @article
{zivFastEvaluationElementary1991
,
249 title = {Fast
{{Evaluation
}} of
{{Elementary Mathematical Functions
}} with
{{Correctly Rounded Last Bit
}}},
252 doi
= {10.1145/114697.116813},
254 journal = {ACM Trans. Math. Softw.
},
255 author = {Ziv
, Abraham
},
258 keywords = {compatibility
,correct rounding
,mathematical library
},
260 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/VRVEUFSA
/Ziv
- 1991 - Fast Evaluation of Elementary Mathematical Functio.pdf
}
263 @book
{a.pIntegralyRyadyElementarnye2002
,
264 edition
= {2. \cyrchar\cyri\cyrchar\cyrz\cyrchar\cyrd.
, \cyrchar\cyri\cyrchar\cyrs\cyrchar\cyrp\cyrchar\cyrr
},
265 title = {\cyrchar\CYRI\cyrchar\cyrn\cyrchar\cyrt\cyrchar\cyre\cyrchar\cyrg\cyrchar\cyrr\cyrchar\cyra\cyrchar\cyrl\cyrchar\cyrery
{} \cyrchar\cyri
{} \cyrchar\CYRR\cyrchar\cyrya\cyrchar\cyrd\cyrchar\cyrery.
{{\cyrchar\CYREREV\cyrchar\cyrl\cyrchar\cyre\cyrchar\cyrm\cyrchar\cyre\cyrchar\cyrn\cyrchar\cyrt\cyrchar\cyra\cyrchar\cyrr\cyrchar\cyrn\cyrchar\cyrery\cyrchar\cyre
}} \cyrchar\CYRF\cyrchar\cyru\cyrchar\cyrn\cyrchar\cyrk\cyrchar\cyrc\cyrchar\cyri\cyrchar\cyri
},
266 volume = {\cyrchar\CYRT\cyrchar\cyro\cyrchar\cyrm
{} 1},
267 isbn
= {978-5-9221-0322-0},
268 publisher = {{\cyrchar\CYRF\cyrchar\CYRI\cyrchar\CYRZ\cyrchar\CYRM\cyrchar\CYRA\cyrchar\CYRT\cyrchar\CYRL\cyrchar\CYRI\cyrchar\CYRT
}},
269 author = {\cyrchar\CYRA.\cyrchar\CYRP
, \cyrchar\CYRP\cyrchar\cyrr\cyrchar\cyru\cyrchar\cyrd\cyrchar\cyrn\cyrchar\cyri\cyrchar\cyrk\cyrchar\cyro\cyrchar\cyrv
{} and \cyrchar\CYRYU.\cyrchar\CYRA
, \cyrchar\CYRB\cyrchar\cyrr\cyrchar\cyrery\cyrchar\cyrch\cyrchar\cyrk\cyrchar\cyro\cyrchar\cyrv
{} and \cyrchar\CYRO.\cyrchar\CYRI
, \cyrchar\CYRM\cyrchar\cyra\cyrchar\cyrr\cyrchar\cyri\cyrchar\cyrch\cyrchar\cyre\cyrchar\cyrv
},
271 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/R3QJRT5W
/[Prudnikov_A.P.
,_Bruechkov_YU.A.
,_Marichev_O.I.
]_I
(BookFi
).djvu
}
274 @book
{a.pIntegralyRyadySpecialnye2003a
,
275 edition
= {2. \cyrchar\cyri\cyrchar\cyrz\cyrchar\cyrd.
, \cyrchar\cyri\cyrchar\cyrs\cyrchar\cyrp\cyrchar\cyrr
},
276 title = {\cyrchar\CYRI\cyrchar\cyrn\cyrchar\cyrt\cyrchar\cyre\cyrchar\cyrg\cyrchar\cyrr\cyrchar\cyra\cyrchar\cyrl\cyrchar\cyrery
{} \cyrchar\cyri
{} \cyrchar\CYRR\cyrchar\cyrya\cyrchar\cyrd\cyrchar\cyrery.
{{\cyrchar\CYRS\cyrchar\cyrp\cyrchar\cyre\cyrchar\cyrc\cyrchar\cyri\cyrchar\cyra\cyrchar\cyrl\cyrchar\cyrsftsn\cyrchar\cyrn\cyrchar\cyrery\cyrchar\cyre
}} \cyrchar\CYRF\cyrchar\cyru\cyrchar\cyrn\cyrchar\cyrk\cyrchar\cyrc\cyrchar\cyri\cyrchar\cyri
},
277 volume = {\cyrchar\CYRT\cyrchar\cyro\cyrchar\cyrm
{} 2},
278 isbn
= {978-5-9221-0322-0},
279 publisher = {{\cyrchar\CYRF\cyrchar\CYRI\cyrchar\CYRZ\cyrchar\CYRM\cyrchar\CYRA\cyrchar\CYRT\cyrchar\CYRL\cyrchar\CYRI\cyrchar\CYRT
}},
280 author = {\cyrchar\CYRA.\cyrchar\CYRP
, \cyrchar\CYRP\cyrchar\cyrr\cyrchar\cyru\cyrchar\cyrd\cyrchar\cyrn\cyrchar\cyri\cyrchar\cyrk\cyrchar\cyro\cyrchar\cyrv
{} and \cyrchar\CYRYU.\cyrchar\CYRA
, \cyrchar\CYRB\cyrchar\cyrr\cyrchar\cyrery\cyrchar\cyrch\cyrchar\cyrk\cyrchar\cyro\cyrchar\cyrv
{} and \cyrchar\CYRO.\cyrchar\CYRI
, \cyrchar\CYRM\cyrchar\cyra\cyrchar\cyrr\cyrchar\cyri\cyrchar\cyrch\cyrchar\cyre\cyrchar\cyrv
},
282 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/CJ7AKG2J
/Прудников_А.П.
,_Брычков_Ю.А.
,_Маричев_О.И._Интегралы_и_ряды._Специальные_функции.djvu
}
285 @article
{wuAccurateComputationHypergeometric1993
,
286 title = {An
{{Accurate Computation
}} of the
{{Hypergeometric Distribution Function
}}},
289 doi
= {10.1145/151271.151274},
290 abstract = {The computation of the cumulative hypergeometric distribution function is of interest to many researchers who are working in the computational sciences and related areas. Presented here is a new method for computing this function that applies prime
number factorization to the factorials. We also apply cancellation to the numerator and denominator to reduce the computational complexity of the initial
, the tail end
, or weighted probabilities to achieve maximum accuracy. The new method includes two algorithms
, one using recursion and the other using iteration. These two algorithms are machine independent
; precision is arbitrary
, subject to storage limitation. The development of the algorithms is discussed
, and some test results and the comparison of these two algorithms are given. To implement both algorithms
, we use the Ada programming language that is an American National Standard Institute standardized language. The language has special features such as exception handling and tasks. Exception handling is used to make programming easier and to prevent overflow or underflow conditions during the execution of the program. Tasks are used to compute the numerator and denominator concurrently
, and to maximize the possible
number of integer multiplications in the numerator and denominator. All of the computations can be done on currently available machines
, and the time consumed by these computations remains reasonably small.
},
292 journal = {ACM Trans. Math. Softw.
},
293 author = {Wu
, Trong
},
296 keywords = {Ada programming language
,Peizer approximations
,exception handling
,hypergeometric distribution function
,prime
number factorization
,tasking
},
298 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/CC3GQ79I
/Wu
- 1993 - An Accurate Computation of the Hypergeometric Dist.pdf
}
301 @article
{nicoroviciPhotonicBandGaps1995
,
302 title = {Photonic Band Gaps for Arrays of Perfectly Conducting Cylinders
},
304 doi
= {10.1103/PhysRevE
.52.1135},
305 abstract = {We study the propagation of electromagnetic waves through arrays of perfectly conducting cylinders for both fundamental polarization cases s and p. We use a generalized Rayleigh identity method and show that for p polarization the fundamental band defines an effective refractive index not in keeping with electrostatics. We exhibit the photonic band structures for very dilute arrays
, where they tend towards the expected free
-propagation form. We also study them for arrays approaching touching
, where very interesting differences between s and p polarization behavior are manifest.
},
307 journal = {Physical Review E
},
308 author = {Nicorovici
, N. A. and McPhedran
, R. C. and Botten
, L. C.
},
312 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/44QN6K4W
/PhysRevE
.52.1135.pdf
;/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/USYDNPNY
/Nicorovici ym.
- 1995 - Photonic band gaps for arrays of perfectly conduct.pdf
;/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/RTPI6HEA
/PhysRevE
.52.html
}
315 @article
{linton_lattice_2010
,
316 title = {Lattice
{{Sums
}} for the
{{Helmholtz Equation
}}},
319 doi
= {10.1137/09075130X
},
320 abstract = {A survey of different representations for lattice sums for the Helmholtz equation is made. These sums arise naturally when dealing with wave scattering by periodic structures. One of the main objectives is to show how the various forms depend on the dimension d of the underlying space and the lattice dimension \$d\_$\backslash$Lambda\$. Lattice sums are related to
, and can be calculated from
, the quasi
-periodic Green's function and this object serves as the starting point of the analysis.
},
322 journal = {SIAM Review
},
323 author = {Linton
, C.
},
327 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/T86ATKYB
/09075130x.pdf
;/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/ETB8X4S9
/09075130X.html
}
330 @article
{linton_one
-_2009
,
331 title = {One
- and Two
-Dimensional Lattice Sums for the Three
-Dimensional
{{Helmholtz
}} Equation
},
334 doi
= {10.1016/j.jcp
.2008.11.013},
335 abstract = {The accurate and efficient computation of lattice sums for the three
-dimensional Helmholtz equation is considered for the cases where the underlying lattice is one
- or two
-dimensional. We demonstrate
, using careful numerical computations
, that the reduction method
, in which the sums for a two
-dimensional lattice are expressed as a sum of one
-dimensional lattice sums leads to an order
-of
-magnitude improvement in performance over the well
-known Ewald method. In the process we clarify and improve on a
number of results originally formulated by Twersky in the
1970s.
},
337 journal = {Journal of Computational Physics
},
338 author = {Linton
, C. M. and Thompson
, I.
},
341 keywords = {Helmholtz equation
,Clausen function
,Ewald summation
,Lattice reduction
,Lattice sum
,Schlömilch
series},
343 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/YMRZHBY4
/Linton ja Thompson
- 2009 - One
- and two
-dimensional lattice sums for the thre.pdf
;/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/Z8CFQ6S9
/S0021999108005962.html
}
346 @article
{wei_broadband_2017
,
347 title = {A
{{Broadband ML
}}-{{FMA
}} for
3-{{D Periodic Green
}}'s
{{Function
}} in
2-{{D Lattice Using Ewald Summation
}}},
350 doi
= {10.1109/TAP
.2017.2690533},
351 abstract = {A periodic fast multipole algorithm
(P
-FMA
) is devised for evaluating
3-D periodic Green's function
(PGF
) for a
2-D lattice which can be used to solve scattering by a structure with
2-D periodicity. The introduction of periodicity in the Green's function formulation produces image sources at each lattice site. Like multilevel FMA
(ML
-FMA
), P
-FMA takes advantage of the distance between image sources and observation points to factorize the field using multipoles. By substituting known factorizations of the free
-space Green's function into the expression for PGF
, one can isolate the summation over the lattice into the translation phase of the FMA. For both plane wave and multipole factorizations
, a common term known as lattice constant appears. The lattice constant is an infinite sum over the lattice which does not converge absolutely when expressed as a spatial sum. Using the Ewald summation technique
, the lattice constants can be evaluated with exponential convergence and high accuracy. The resulting P
-FMA is between O
(N
) and O
(N log N
) in memory use and computational complexity
, depending on the object size relative to the wavelength.
},
353 journal = {IEEE Transactions on Antennas and Propagation
},
354 author = {Wei
, M. and Chew
, W. C.
},
357 keywords = {computational complexity
,Green's function methods
,Geometry
,Convergence
,Scattering
,periodic structures
,Ewald summation
,2D lattice
,2D periodicity
,3D periodic Green function
,3D PGF evaluation
,Broadband antennas
,Broadband communication
,broadband ML
-FMA
,Ewald summation technique
,fast multipole method
(ML
-FMA
),FMA translation phase
,free
-space Green function
,lattice constant
,lattice sum
,Lattices
,method of moments
(MoM
),multilevel
,multilevel FMA
,multipole factorization
,P
-FMA
,periodic fast multipole algorithm
,periodic Green’s function
(PGF
),periodic scattering
,plane wave factorization
},
359 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/33MFL85V
/Wei ja Chew
- 2017 - A Broadband ML
-FMA for
3-D Periodic Green’s Functi.pdf
;/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/RN9AUGNQ
/7891536.html
}
362 @article
{moroz_quasi
-periodic_2006
,
363 title = {Quasi
-Periodic
{{Green
}}'s Functions of the
{{Helmholtz
}} and
{{Laplace
}} Equations
},
366 doi
= {10.1088/0305-4470/39/36/009},
367 abstract = {A classical problem of free
-space Green's function G
0$\Lambda$ representations of the Helmholtz equation is studied in various quasi
-periodic cases
, i.e.
, when an underlying periodicity is imposed in less dimensions than is the dimension of an embedding space. Exponentially convergent
series for the free
-space quasi
-periodic G
0$\Lambda$ and for the expansion coefficients D L of G
0$\Lambda$ in the basis of regular
(cylindrical in two dimensions and spherical in three dimension
(3D
)) waves
, or lattice sums
, are reviewed and new results for the case of a one
-dimensional
(1D
) periodicity in
3D are derived. From a mathematical point of view
, a derivation of exponentially convergent representations for Schl\"omilch
series of cylindrical and spherical Hankel functions of any integer order is accomplished. Exponentially convergent
series for G
0$\Lambda$ and lattice sums D L hold for any value of the Bloch momentum and allow G
0$\Lambda$ to be efficiently evaluated also in the periodicity plane. The quasi
-periodic Green's functions of the Laplace equation are obtained from the corresponding representations of G
0$\Lambda$ of the Helmholtz equation by taking the limit of the wave vector magnitude going to zero. The derivation of relevant results in the case of a
1D periodicity in
3D highlights the common part which is universally applicable to any of remaining quasi
-periodic cases. The results obtained can be useful for the numerical solution of boundary integral equations for potential flows in fluid mechanics
, remote sensing of periodic surfaces
, periodic gratings
, and infinite arrays of resonators coupled to a waveguide
, in many contexts of simulating systems of charged particles
, in molecular dynamics
, for the description of quasi
-periodic arrays of point interactions in quantum mechanics
, and in various ab initio first
-principle multiple
-scattering theories for the analysis of diffraction of classical and quantum waves.
},
370 journal = {Journal of Physics A
: Mathematical and General
},
371 author = {Moroz
, Alexander
},
374 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/268RXLJ4
/Moroz
- 2006 - Quasi
-periodic Green's functions of the Helmholtz .pdf
;/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/MGA5XR44
/dlserr.pdf
}
377 @article
{mcrae_multiplescattering_1966
,
378 title = {Multiple
-{{Scattering Treatment
}} of
{{Low
}}-{{Energy Electron
}}-{{Diffraction Intensities
}}},
381 doi
= {10.1063/1.1728101},
383 journal = {The Journal of Chemical Physics
},
384 author = {McRae
, E. G.
},
388 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/SK7KQSKF
/McRae
- 1966 - Multiple‐Scattering Treatment of Low‐Energy Electr.pdf
;/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/Q2S3495C
/1.html
}
391 @article
{kambe_theory_2014
,
392 title = {Theory of
{{Electron Diffraction
}} by
{{Crystals
}}},
395 doi
= {10.1515/zna
-1967-0402},
396 abstract = {A general theory of electron diffraction by crystals is developed. The crystals are assumed to be infinitely extended in two dimensions and finite in the third dimension. For the scattering problem by this structure two
-dimensionally expanded forms of GREEN'S function and integral equation are at first derived
, and combined in single three
-dimensional forms. EWALD'S method is applied to sum up the
series for GREEN'S function.
},
398 journal = {Zeitschrift f\"ur Naturforschung A
},
399 author = {Kambe
, Kyozaburo
},
402 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/VEIUHCCD
/Kambe
- 2014 - Theory of Electron Diffraction by Crystals.pdf
;/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/WPKCSVZG
/Kambe
- 2014 - Theory of Electron Diffraction by Crystals.pdf
}
405 @article
{enoch_sums_2001
,
406 title = {Sums of Spherical Waves for Lattices
, Layers
, and Lines
},
409 doi
= {10.1063/1.1409348},
411 journal = {Journal of Mathematical Physics
},
412 author = {Enoch
, S. and McPhedran
, R. C. and Nicorovici
, N. A. and Botten
, L. C. and Nixon
, J. N.
},
416 file
= {/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/GZW5G2AY
/Enoch ym.
- 2001 - Sums of spherical waves for lattices
, layers
, and .pdf
;/home
/mmn
/.zotero
/zotero
/w4aj0ekp.default
/zotero
/storage
/2ZQXY82F
/1.html
}